Module code	TE-3304	TE-3304			
Module Title	Electromecha	Electromechanical Energy Conversion and Control			
Degree/Diploma	Bachelor of E	Bachelor of Engineering Degree			
Type of Module	Major Option	Major Option			
Modular Credits	4	Total student workload	8	hours/week	
		Contact hours	4	hours/week	
Prerequisite	None	•	-		
Anti-requisite	None				

Aims

To provide students a good knowledge on power systems, power flow, AC (Alternating Current) machines, including single phase, split-phase, three-phase (induction and synchronous machines), and DC (direct current) machines. Study on speed control of machines.

Learning Outcomes:

On successful completion of this module, a student will be expected to be able to:

Lower order:	30%	- understand the basic principles of power systems and electromechanical energy	
		conversion	
Middle	40%	- analyse the performance of power end energy	
order:		- analyse the performance of synchronous and induction machines	
Higher order:	30%	- perform experiments for power systems	
		- use laboratory equipment to obtain data from power systems	
		- present information and arguments for justification in written communications	

Module Contents

- Introduction to power systems, power flow, per unit analysis and electromechanical Energy Conversion
- Transformer types and construction, ideal transformer, equivalent circuits, power & variable frequency transformers, Transformer analysis on a per unit basis, Voltage regulation & efficiency, Auto-transformers
- Electromechanical Energy Conversion, Forces & Torques in Magnetic Field Systems, Energy Balance, Determination of Magnetic Force (torque)
- AC Machinery Fundamentals, Rotating magnetic field, Induced voltage & torque in AC machine
- Synchronous Generator Construction, Speed & internal generated voltage, Equivalent circuit, Phasor diagram
- Basic principles of synchronous motors and their operation, speed control
- Construction of induction Motors, Basic concepts, Equivalent circuit, Power & Torque, Torque-speed characteristics
- Introduction to DC Machines and their Principle of Operation, commutation
- Different types of DC Machines

Assessment	Formative assessment	Online multiple choice questions will be used to test and give feedback on their learning
	Summative Examination: 50%	
assessment		Coursework: 50%
		- 2 assignments (10% each)
		- 1 class test (10%)
		- 2 laboratory reports (10% each)