Module code	TG-1303			
Module Title	Introductory Mechanics for Engineers			
Degree/Diploma	Bachelor of Engineering Degree			
Type of Module	Major Option			
Modular Credits	4	Total student Workload	8	hours/week
		Contact hours	4	hours/week
Prerequisite	None			
Anti-requisite	SP-1204 Classical Mechanics and SP-1301 Classical Mechanics			

Aims

The module is designed for students to understand the basics of classical mechanics used in Engineering applications.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

_		-	
Lower order :	30%	 explain SI system and prefixes, and significant figures. Differentiate the scalar and vector quantities. Define and differentiate displacement, velocity and acceleration. Use the equations of kinematics and Newton's laws to solve various problems. Differentiate between gravitational and elastic potential energy. 	
Middle order :	60%	apply these principles to analyse properties of objects including linear momentum, impulse and centre of mass, to distinguish between inelastic and elastic collisions, to describe properties of rotating objects and to explain torque and angular momentum.	
Higher order:	10%	evaluate the conditions for static equilibrium of rigid objects employ the existing models for new applications work independently in resolving real-life problems applying these theories	

Module Contents

- Measurement and units, vectors and vector multiplication
- Motion in one and two dimensions, analysis of projectile motion,
- Forces and Newton's laws of motion, friction and its properties, kinetic energy and work, potential energy and energy conservation, systems of particles,
- Conservation of momentum, collisions, rotational kinematics and dynamics, conservation of angular momentum, equilibrium and elasticity, gravitation.

Assessment	Formative	Weekly tutorial problems will be used to test students' ability.
	assessment	Feedback will be provided at the end of their learning.
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 3 class tests (10% each)
		- 2 laboratory reports (5% each)